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On the Error in Padé Approximations for Functions

Defined by Stieltjes Integrals¥®

Yudell L. Luke
University of Missouri
Kansas City, Missouri

I. Summary and Introduction

In a previous paper, the author derived an infinite series

representation for the error in the Gaussian quadrature of

b %
I = J( w(t)f(t,z)dt where w(t) is the weight function and
a

f(t,z) is known. We suppose that £(t,z) can be represented
by an expansion in series of orthogonal polynomials

{q, (t)}
which is uniformly convergent in [a,b] . Thus, £(t,z)

- .y b ' '
- 3 €8, () , ¢ =N fa w(t)q, (£)£(t,z)dt .

(n)
szo Con+2+s82n+2+s where the

Then the error

can be expressed in the form
gﬁn)'s depend only on the properties of qn(t) . Usually only
one or two terms of the series are needed to achieve a realistic
estimate of the error. Here asymptotic estimates for Ch for

large n are employed. In the present paper, the error analysis

analysis is applied to the situation where f(t,z) = (1+1‘./z)-1 .

In this instance, Gaussian quadrature of

I and integrals simply

*This research was sponsored by the Air Force Office of
Scientific Research under grant 73-2520.

s 1ic release;
'n unlimitede

aistripution

Approved

Lo




a2 e ) o

-——y

i o
¥ ¥ and ol

ot
o




b

related to I 1lead to approximations in =z which occupy the
(n,n+r-1) positions of the Padé matrix table for I . Three

important examples are treated. Two examples are generalized to
the case where f(t,z) = (1+t/z)‘b.

I1. Gaussian Quadrature

Let

b
I(z,a,b) = f w(t)f(t,z)dt (1)
a

where we suppose that w(t) and £f(t,z) are integrable over
the path a to b . We consider approximation of (1) by use
of the Gaussian quadrature formula. To this end, let {qn(t)}

be a system of orthogonal polynomials of the form

s k
Ga(t) = 2 Ay b (2)
such that

b

~/' w(t)q, (t)q, (t)dt = h 5 (3)
a
smn =1 if m=n , and

smn ® 0 IE mEn . 2 €))

Let t. be defined by

n
o
-
-
-
=

Qpaq (t5) = 0, i (5)

and put

A = An'n A
s Lt (t,)
n+tl*"i’"*n*"i




Following Luke [1], Gaussian quadrature of (1) leads to the

formulation

I(z,a,b) = I (z,a,b) + E (2) , (7)

L o ]

In(z,a,b) £

TR o 8
; (t;,2) (8)

o 1i.n
where En(z) is the remainder which is zero if f(t,z) is a
polynomial in t of degree = 2n+l1 . Under the assumption that
f(t,z) can be expressed as an expansion in the polynoﬁials

{qn(t)} which is uniformly convergent in [a,b] , that is,

f£(t,z) = § quk(t) ’ (9
k=0
..1 b
Cy = hk w(t)qk(t)f(t,z)dt . (10)
a
then#*
R (n
E,(2) ¢ 550 c2n+2+sg2n22+s > (A1)
where
M _ M D Anaer | %2ne2,2n02Ma o
Eine2 " S s > (12)
3 an+1,n+1
and expressions for g§:22+s » S >0 , are detailed in the

source cited. There explicit forms for s = 0,1,2 are derived
for the classical orthogonal polynomials of Jacobi, Laguerre,

Hermite and Bessel,

(n)
Zn+2+s
was omitted. It should be noted, for example, that the formula
for 8x+1 is not necessarily that for 8y with k replaced by

k+1 . Here we have added the superscript notation to alert the
reader to this situation.

*In references [1,4], the n superscript notation on g
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We also have
d2n+2

h f(t,z)
E (3} = - dEe B (13)
(2n+2)!af ) 14y

0 if f(t,z) is a polynomial in t of

and clearly En(z)

degree = 2n+l .

I11. Padé Approximations

Let

5 . (14)

F(z) = ; Vi

k=0
Let Pm(z) and Qn(z) be polynomials in 2z of degree m and

n , respectively, such that

Q,(2)F(z) - P_(z) = 0(z""™") . (15)

Then P (2)/Q,(z) is the Padé approximation to F(z) which
occupies the (n,m) position in the Padé matrix table. If

m =n , we have the main diagonal entries and if m = n-1 , we
have the first subdiagonal entries. For further information on
Padé approximations with references and numerous examples, see

[2,3]* See also references [6-9] ahead.

*In [2], the first subdiagonal approximants are said to occupy

the (n-1,n) positions in the Pade matrix table in contradis-
tinction to the present notation (n,n-1) . Also in [3,pp.493,494)
there are a few (obvious) typographical errors.
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IV. Application to Stieltjes Integrals

In this section, we apply the results of Sections 2 and 3

to the siutation where

f(t,z_) w (1 + t/z).:l o (16)
In this event,
e ial in z ! of 4
I (z,a,b) = 2 i,n _ polynomial in z ge%s egree n
n e : 2 -1 S
i=0 i polynomial in z of degree m+1
(17)
zh
+1 -2n-2
Bn(Z) = A n 2n+3 = 0(2 n )’ 5 o g < b ‘ (18)

It follows that In(z,a,b) is the first subdiagonal Padé
approximation to I(z,a,b) where f£f(t,z) is given by (16).
Notice that if a and b are real and 2z is positive, then

En(z) is also positive.

We now show how to get the main diagonal Padé approximation.

From (16),
f(t,2) =1 -fa+Ht, (19)

and so

" -1
1(z,a,b) = ~/. witjas - 2z " T*{2,8:8) ,
a
b
I*(z,a,b) = f tw(t) (1 + t/z) lat . (20)
a

We apply our basic quadrature procedure to I*(z,a,b) . 1In

effect, this is a generalization of Gaussian quadrature for (1)

-

.




and (16) with an additional abscissa t = 0 , which goes by the

name Radau. For a discussion of generalized Gaussian quadrature

with arbitrary additional abscissae, see Luke, Ting and Kemp [2].

For quadrature of (20), 1let

. X
PLE) =2 B, £, (21)
n k=0 KX»n
b
3 tw(t)p, (t)p, (t)dt = j &, (22)
pl’l(ui) =@ . 1=0,1,.4.,n , (23)
e "nJn F_ = Pn+1,ne1 (24)
i,n p;1+1(ui)pn6§ i bn’n }
Then :
I(z,a,b) = I*(z,a,b) + V_(z) , (25)
* - Yi,n
In(z,a,b) = W(t)dt - z .-Z_: m—
a 1=0 1
= polynomial in z-1 of degree n+1l (26)
- ’
polynomial in z . of degree n+l
where Vn(z) is the remainder and
j .
vn(z) - - — n+1 g = 0(z 2n 3) )
b1 (z+¢)
n+l,n+l
a<¢<b. . (27)

Thus, l;(z,a,b) is the main diagonal Padé approximation to

In(z,a,b) . If a and b are real and z is positive, then

|
|
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Vo(2) < 1(z,a,b) < E (2). (28)

Since
(+t/z)"t = kEO (T t/2k + O/ Ay, @)
-1 . i b
I(z,a,b)==rz (-)kz'.}r tkw(t)dt +'K—)r/zr{/~ trw(t)(l+t/z)—1dt,A
=0 a a ‘

(30)

Gaussian quadrature of the integral in (30) leads to an approxi-
mation which occupies the (n,n+r-1) position in fhe'Padé matrix
table. 5 2

That Gaussian quadrature of Stieltjes integrals leads to
Padé approximations is rather well known. Indeed it goes back
to Stieltjes [5]. In recent times. Padé approximations of
Stieltjes integrals via Gaussian quadrature together
with error analysés have been considered by a number of writers.

We make no attempt to give a complete bibliography, but see -

Allen et al [6,7], Chui [8], Karlsson and Sydow P] and the refer-

ences noted in these sources. There is an extensive literature

on Gaussian quadrature for general integrals which we do not quote.

In this connection, see Davis and Rabinowitz [10] and Donaldson
and Elliott [11] . The latter is especially valuable as it de-
velops a unified approach to quadrature formulas with the error
expressed as a contour integral from which asymptotic estimates
of the error can be deduced. Our approach differs from all
other authors in that we study the error in Padé approximations
by use of (11). We now turn to three examples.
V. Examples

We treat three cases for which considerable information is

known about their Padé approximations. In what follows, we

make free use of notations and ideas found in my books [2,3] .




In each situation we treat the first subdiagonal Padé approxi-

mation only.

Example 1. Consider

1
: 7 e
2F1(1’a3c‘1/2) = I'(c) f e 3 e .

r(a)r(c-a) (1+t/z) ‘
0 (31)
R(c) >R(a) >0, |Jarg(il+1/z)]| <.
We have [2, v.2, p.31],
(1+t/2)" 1 = z c (2RI (t), o = c-a-1, B = a1, (32)
n=

‘ . -y ¢y n+p+1,n+1

A cn(z) = —Eﬁi—l———-zFl( : -1/z) , A = atf+l = c-1, (33)
z (n+x)n 2n+x+1

where Réa’s)(t) is the shifted Jacobi polynomial. From

{2, v.1, p.237],

) g (_)HZS"AZ(HW)%C'E(H+1)(1+e’E)A'B-3/2

(o (Z 1
n (l_e"g)’z"B

{1+o0m Y1, GO 1

E . et =22+ 1; 2(2%42)" . {35)
where 3 sign is chosen so that |e'5| < 1. This is possible for
' all z except -1 < z < 0. From [1],

(n) _ F(n+a+2)T(n+B+2)T (n+A+1) (n+1) IT (4n+r+4)

¢ E2n+2 {r(2n+x+2)}2r(2n+x+3)(2n+2)3
- 2 M/ % 1+ o7 Dyy (36)
ggnzs 2(a-B8) (n+1) (n+2) (4n+r+4) 1
- n -
;rgy" - - A ity = ~(em) (1 + o™} .
2n+2

We suppose that g§212+r/g§212 = h(a,B) {1 + O(n’l)} uniformly

for all r > 1 where h(a,B) depends only on a and B. For the

special cases a = *g , we have verified this for r = 2. But




proof of the general situation seems elusive. From (11) and

(34)-(36), we find with

FL(2) = oyt Ea(®) (s7)
| ~E(A058) o Ero
F(z) = DOsDnze ( 2;_;(1+e_€)§_z {1+ oY)
I'(a+1)T(B+1)2 (1-e”%)7
<81 » (a-8)e % + A(e,B,E) + O(n" 1)}, (38) -

where A(a,B,E) depends only on a, Band & and is O(e'zg). From
[?, Ve, p.17ﬂ (there put a = 1, 0 = B + 1, p = X and to con-
form to the present notation, replace n by n + 1), we have

I,()\+1)”B+1e-£(2n+:'>+B)(1+e-£)

2o 1
T (at1)T(B+1) 220 1 {1+ 0 )} (39

Rn+1(z) =

‘Neglecting O(n—l) terms, we have

CF(z) {1+ (e-B)e’® + A(a,8,8))

Rote)  (Beiiee™ g i 7oy e it
g

If z is sufficiently large so that e - is sufficiently small, then

Fn(z) e o (u—B)e-g + A(a,B,E)}
Rpe1(2) 0+ (a-B)e™® + ke 25{(a-B)%- A3+ O(e7>%))

’ (41)

and so within the limitations noted, the two different error
analyses give the same result.

Example 2. We consider the complementary incomplete gamma function

-z v-1[% -t v
. & 2 e "t "dt
T(v,2) = FI%) J; 7)) (42)
Considerable information on the main diagonal and first sub-
diagonal Padé approximations are known. See [2,3] where asymp-

totic results are given to show that these approximations con-

verge, although the convergence is rather slow. Formally, at
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T

least, we have [2, v.2, p.18],

s (-v)
(1+t/2z) " = ngg k (2)L70 (1),

k, (z) = {I‘(n+1-v)}—1 %:%(z

1-v,1
(-v) a1 . Ao
Ly (t) = {1 v)n/n!}lFl( nil-v:t) .
Here (45) is the generalized Laguerre polynomial. From

[2, v.1, p.264],

y Lv-% t/2 5
LMy - (2B ce 1+ 0@y
m™'n

X cos{Z(n’c)!’2 + m(Lv-%) + O(n'%)},
with t fixed and n » », Also from [2, v.2, p.200] or from

the work of Wimp [12],

K, (2) = (12)%(n/2)% %e Zexpl-2(n2) M1 + 0(n7%))
z fixed, larg zf < v - €, € > 0, n + &,

Thus under the conditions stated

Lﬁ-v)(t)kn(z) = n'%O(exp{-Z(nz)%}),

10

1-n
1-
) = nlz vU(n+1—v;1-v;z),

and so (43) converges, though the convergence is rather slow.

(43)

(44)

(45)

(46).

(47)

(48)

However, the convergence is not uniform in 0 < t < = as can be

deduced from a known asymptotic expansion for the generalized

Laguerre polynomial for large n which holds uniformly for
large t. See Wyman [13]. Hence for the example (42), our

method of error analysis fails.

Example 3. We now consider a form related to the incomplete

gamma function,
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Y o a1 g
1Fl(l;)\+1;—z) = {r(a+1)/2ni} - (1+z/p) “dp,
y-ie
Y > 0,R(\) > - 1,]arg(l+z/y)] < w. (49)

This example is important since it illustrates use of Gaussian
quadrature and our technique of error analysis for the inversion
of Laplace transforms. From [2, v.2, p.71, we have

(1+z/p) "1 =

o v, (2)R (%,p) , (50)

[T e -
o

vn(z) = {znun(z)/(n+l)n} s un(z) = e'lel(n+A;2n+l+1;z); (51)
Rn()"p) = 2F0('n’n+)\;p-1) ) (52)

The latter is called a Bessel polynomial and for properties of

same needed in our present study, see [1,2,3]. From Luke [14],

we have

w (2) = e~ 2o (N (2n4A+1) ¢y, 2 (nr1) (n4d) +0(n )} . (53)
s 2(2n+A+2) (2n+1+1)

From, [1],

(M) _ ()™ Ir(nea+1) (n+1) IT (4n+r+4)

g
Zn+2 {r(2n+A+2)}ZF(2n+l+3)
~ T NGy o, (54)
(n)
£2n+3 _ | %12111;§%%:A:£1T - - an{1 + 0(a" 1)) 55)
;TET_‘ Zn++ n+x+3 = s ¢
2n+2 :

From (51) and (53),

V2n+3==z(2n+k+2)ez(1-l)/(4n+x+5)(4n+A+7)

2,2
Von+2 (An+x+4) (4n+Ar+5) {1 +0(z/n“)}. (56)

We suppose that

B Y S S S S Y T W Iy ey S PV T LNy Sy
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(n)
g2n+2+rv2n+2+1‘ = f {1 + O(n'l)}
g(n) v r’n .
2n+2 2n+2
_ ()" (z(2n+a+2)\ T
fr,n T ARl In+X+5 4 (57)

uniformly in r, r > 1. This is true for r = i in view of
(55,56). Using a result in [1], we can verify (57) when A = 1
for r = 1,2. However, proof of the general statement appears
elusive. If Un(z) is the error in the first subdiagonal
Padé approximation for the left hand side of (49), then *from

(11), (51-54) and (57), we find

U (z) = D012 e Frmaas ) ey t1vo MY, (58)
nUT WAL (e 14 /2) (T (0437242 /2) YT (nr 240/ 2)
since -
ez(2n+)\+2)/(4n+h+5)

B
rEO s 1 (59)

and (58) is precisely the result given in [2, v.2, p.191],
where to conform to our present notation,we must replace n
and v by n + 1 and X respectively, and set a = 1.
VI Extension to Generalized Stieltjes Integrals

It is of interest to indicate an extension of the_above

analyses to the case where
£(t,z) = (1 + t/2)"° ' (60)

wher? b is arbitrary so long as the integral (1) has meaning.
Thcn}?he quadrature formula (8), the summation part holds save
that f(ti,z) is now computed from (60), since the weights li,

are independent of b. Now in the expression for the erTrorT, see

(7), (11), (12) and [1], the coefficients Cx depend on b, but
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' but the coefficients g§212+s depend only on the system of orthogonal |

polynomials and so are independent of b. The expansion (60) in

series of shifted Jacobi polynomials and in series of Bessel poly-
nomials after the manner of the corresponding expansions for b = 1
as in Examples 1 and 3, respectively, are readily deduced from re-
sults given in the cited references. With such data in hand, (38)
and (58) are easily generalized.

For a generalization of Example 1, we have

1
) B T (c) ta-l 1-t c-a-1
zFl(a,b,c,-llz)-r(a)r%c_aLL. §1+t3z)b dt, (61)

valid under the same conditions as for (31).

A}et Fn(z,b) be the error in the Gaussian approximation for (61)

such that when b = 1 we get the error in the first subdiagonal

e

Padé approximation, see (38). Then under the same assumptions

which led to (38), we find
F (z,b)/F (z,1) = {T(6)} M2z(z%+2) 1P 11 + o™y . (62)

Similarly, for a generalization of Example 3, we have

01 R p,-A-1 -b
1F1(bsA+15-2) = {F(A+1)/2n1{/- etp {1*z/p) "dp, (63)
_ bt §n

valid under the same conditions as for (49). Now let Un(z,b) be

the error in the Gaussian approximation for (63) such that when

b = 1, we obtain the error in the first subdiagonal Padé approxi-

mation, see (58). Then under the same assumptions which led to

(58), we get
U (z,b)/U (z,1) = {(2n)* /T (b)}1 + o™y} . (64)

In each example, the dependence of the error on b is quite

weak.
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